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This is just the Lagrange bracket of xl with pi} and 
the above requirement is satisfied if the <2k, Pk form a 
canonical set (in involution). 

If we had expressed Zl as a function of <2k, and made 
a similar projection of A<2M=X^ 5(>, we would have 
obtained instead of the Lagrange bracket relation, the 

1. INTRODUCTION 

IN the basic work of Bardeen, Cooper, and Sehrieffer,1 

the energy spectrum of a superconductor is de
scribed in terms of independent quasiparticle excita
tions. The natural mathematical tool for this description 
is the quasiparticle canonical transformation of Bogo-
lyubov2 and Valatin.3 The presence of external electro
magnetic fields, however, invalidates the simple pairing 
of the original Bogolyubov-Valatin transformation. In 
order to study this situation one can introduce a 
generalized quasiparticle transformation which makes 
no such pairing assumptions. This was done again by 
Bogolyubov2,4 and also, in slightly different forms, by 
a number of other authors.5 Using these methods a 
fully gauge invariant treatment of the Meissner effect 
has been achieved. 

These discussions of the Meissner effect are usually 
limited to the case of absolute zero temperature. The 
generalization to finite temperatures is obviously 
desirable in order to study electromagnetic properties 
up to the transition temperature. However, it is far 
from obvious how one should proceed in order to 
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Poisson bracket relations 

/dQ*dPv dQkdPk>\ 
U ) = Skk', (CIO) 
i \dx{ dpi dpi dx{ / 

which also are satisfied if Qk, Pk, form a canonical set 
of functions. 

generalize to finite temperatures some of the above 
mentioned discussions. It is convenient to follow rather 
closely Bogolyubov's work4 which can be generalized 
to finite temperature without too much difficulty.6 

We make an ansatz for the density matrix in terms of 
independent quasiparticles and use the principle of 
minimization for the grand potential. In this way we 
obtain a set of nonlinear equations for a superconductor 
in a magnetic field which are valid at finite temperature. 
The Meissner effect is discussed in a fully gauge 
invariant way by linearizing the equations with respect 
to the vector potential. The current is seen to vanish 
at the critical temperature except for residual Landau-
type diamagnetism. In the simple special case of a 
factorizable interaction one recovers the temperature 
dependence of the penetration depth given originally 
by BCS.1 

Once the Meissner effect is established, one can use 
the nonlinear equations to study the phenomenon of 
magnetic flux quantization in a multiply-connected 
superconductor. This phenomenon, which was predicted 
theoretically by London7 and Onsager,8 has been 
verified experimentally by Deaver and Fairbank and 
by Doll and Nabauer.9 For mathematical simplicity 

6 Actually we can make some simplifications, since we do not 
seek the energy spectrum of collective excitations. This latter 
problem can be studied separately and was actually solved by 
E. R. Velibekov, Dokl. Akademii Nauk SSSR 142, 1265 (1962) 
[translation: Soviet Phys—Doklady 7, 134 (1962)]. 

7 F. London, Superfluids (Dover Publications, Inc., New York, 
1961), Vol. I. 

8 L. Onsager, Phys. Rev. Letters 7, 50 (1961). 
9 B. S. Deaver and W. M. Fairbank, Phys. Rev. Letters 7, 43 

(1961); R. Doll and M. Nabauer, Phys. Rev. Letters 7, 51 (1961); 
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the doubly connected geometry is simulated in our 
treatment (following Yang10) by a straight geometry 
with periodicity conditions. In the bulk of the material 
the nonlinear equations are found to be almost identical 
to those for an infinite medium with no field. The 
requirement of consistency with Maxwell's equation 
eliminates all but the solutions corresponding to 
quantized flux. This study of the nonlinear equations 
reproduces a number of the physical results given by 
Byers and Yang11 in their work on magnetic flux 
quantization and by Yang10 in his discussion of quan
tum-mechanical long-range order. In particular, we 
obtain the parabolic dependence of the free-energy 
curve upon the flux in the neighborhood of the quan
tized values. Since our scheme is valid at finite temper
ature, we can observe how the free-energy curve 
flattens out as one approaches the critical temperature 
from below. We also see that, in the absence of an 
attractive interaction causing superconductivity, the 
free-energy curve would be flat at all temperatures. 
The results of this discussion are very similar to those 
obtained independently by Maki and Tsuneto12 with a 
different method, that of the thermal Green's functions. 
Our formulas, however, are more general, since they 
do not employ the stylized effective interaction of 
Gor'kov, and in particular contain contributions of 
Hartree-Fock type which are not considered by these 
authors. 

It will be shown in a separate paper that the basic 
nonlinear equations given here can be used to give a 
systematic derivation of the Landau-Ginzburg theory 
of superconductivity.13 This provides an alternative 
derivation to that given by Gor'kov14 and Werthamer15 

using the method of the thermal Green's functions and 
can be used to justify the work of several authors16 

who have discussed the Meissner effect and quantization 
of the fluxoid within the framework of the Landau-
Ginzburg theory. 

2. MODEL 

The model used aims at describing the essential 
equilibrium features more or less in common to all 
soft, pure superconductors. The Hamiltonian17 

10 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
11 N. Byers and C. N. Yang, Phys. Rev. Letters 7, 46 (1961). 
12 K. Maki and T. Tsuneto, Progr. Theoret. Phys. (Kyoto) 27, 

228 (1962). 
13 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 

20, 1064 (1950). 
14 L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959) 

[translation: Soviet Phys.—JETP 9, 1364 (1959)]. 
15 N. R. Werthamer, Phys. Rev. 132, 663 (1963). 
16 V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 42, 299 (1962) 

[translation: Soviet Phys.—JETP 15, 207 (1962)]; J. Bardeen, 
Phys. Rev. Letters 7, 164 (1961); J. B. Keller and B. Zumino, 
New York University (unpublished). 

17 Here / = (k,a) denotes the combination of momentum space 
vector and spin. Summation (periodic boundary conditions) over 

describes a system of charged interacting fermions. 
As is customary, we include in K a term containing 
the chemical potential /x. The matrix K is given by 

^//<=(/'I(P-A)2-MI/) 
= S„O(k-k0 (k2-M) - (k+k') • A(k'-k) 

+ (A*)(k'-k)]. (2) 

The kinetic-energy part of H is clearly invariant under 
a gauge transformation of the second kind. Assuming 
a diagonal and factorizable spin dependence for P,18 

the requirements of velocity independence and gauge 
invariance lead to essentially just one possibility for P. 

P / i / 2 / 3 / 4 = 5 ^ 3 5 ^ ^ (ki+k 2—k 3 -k 4 )Pk, (3) 

k = k i - k 2 , P k =P_ k *=P_ k . (4) 

Finally the charge current density operator associated 
with H is given by 

J q " Jq I Jq 

= eV~1 E(2k+q)ak<rt«k+qff 
ko-

- ^ F - ^ A f k - k ' + q K W , , (5) 
kkV 

where p and d denote the paramagnetic and diamagnetic 
parts, respectively. 

3. QUASIPARTICLE TRANSFORMATION 

In order to avoid the simple pairing assumptions of 
the BCS scheme and to have the possibility of gauge-
invariant equations, Bogolyubov4 introduced the gener
alized quasiparticle canonical transformation (sum over 
repeated indices)19 

df = Uff'Olfr + V//'<*/> t , 

It turns out to be convenient to introduce supervectors 
and supermatrices 

- 0 - - O - c-C '*)• m 

a=C«. (6') 

repeated indices is implied. The second quantized fermion field 
a,f satisfies the usual fermion equal-time commutation relations. 
The Hermiticity of H implies K/^ — K/1^* for the kinetic-energy 
density and P/i/2/3/4 = p /2 /i /4 /s = p/4/3/2/i* for the potential-energy 
density. I t is convenient to use units for which -h=c = 2m = 1 and 
to define the vector potential so that ^AConventionai = A, where 
e = — | e | is the charge and m the mass of the fermions. 

18 Different spin dependences lead to minor modifications of 
what follows. 

19 The ansatz, Eq. (6), includes the simple pairing case for the 
special choice 

Uff = 8ffUf, Vff> = 8ff>vf, 

where / = — / and uj = ti-f, Vf=— z>_/. 

fl'=iT/vi^/lt^/2+2^>/VV3/4^/lt^/2W3^/4 (1) such that Eq. (6) can be written concisely as 
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It is shown in Appendix I that if one requires the 
transformation C to be canonical and invertible, then 
C must be unitary. Then the matrix C is characterized 
by20 

C=C™=(Ct)-1. (7') 

It is clear that the set of all generalized quasiparticle 
canonical transformations forms a group. 

Later we shall use the dyadic particle and quasi
particle density matrix operators21 aat and a«t as well 
as their thermodynamic expectation values in the 
slightly modified forms 

/ - G * F\ 
G=Gt=-G«=<aaMI>=( ), (8) 

\-F* G) 

r=rt=-r*=<«aMi>=( ), 
\-$* r/ 

(9) 

such that 

(aai)=G+§I=G 

(aat) = r + i / = r ' 

/ -Or* fi\ 
I - ) • (90 

It is seen immediately from the definitions that G and 
r are Hermitian and m antisymmetric. Using Eqs. (60, 
(8), and (9), one immediately verifies the relation 

G=CrCt. (10) 

The ansatz for the statistical operator W corre
sponding to independent quasiparticles is 

= exp[Tr(aa t ln ( r+ | I ) ) ] , (11) 

and it follows, in complete analogy to the free-particle 
case, that r is diagonal. The entropy S is computed 
as the free-quasiparticle entropy according to 

-TS=p*QnW) 
= (2/3)-iTr[(§I+r)ln(|I+r) 

+ ( | I - r ) i n ( | I - r ) ] . (12) 

As derived in Appendix II the ansatz (11) implies the 
complete factorization of the two-particle correlation 
function according to 

{af^af^a/*af*)= G/i/4^/2/3"^/1/3^/2/^^/1/2^/3/4- (13) 

The three terms appearing here correspond, loosely 
speaking, to the approximations associated with the 
names Harteee, Fock, and BCS, respectively. 

20 To characterize the special structure of C and similar matrices 
it is expedient to define the m adjoint by 

and 
\az dij \a2* af) 

21 In general the symbols will be denned such that Latin 
symbols refer to particles and Greek symbols to quasiparticles. 

Now (H) can be expressed as 

(H)=iTrt(E+K)G+FWl, (14) 

with the following definitions22 for the self-consistent 
energy E and the pair potential D: 

Qflf2fZfi=PflfZfAf2~PflfZf2fij (IS) 

E=K+Q'G, D=PF. (16) 

In complete analogy with the density matrices G and 
r one defines the energy matrices E and £ by 

E = E t = - E " 
-E* D\ 

and 

/—Mr v \ 

\-D* E/ 

/-&* A \ 

\ - A * <§/ 

(17) 

(170 

such that 
E=C€Ct. (17") 

We shall finally abbreviate Eq. (16) according to 
Eq. (17) as 

E = E [ G ] = K + P - G . (160 

With this notation the grand potential 12 can be written 
by adding Eqs. (12) and (14) 

0 = i Tr{(E+K)G+2/3-1[(P+r) ln ( J I+ r ) 
+ ( j l - r ) i n ( i l - r ) ] > , (18) 

from which it is seen immediately that O is real. 

4. MINIMIZATION OF THE GRAND POTENTIAL 

We can now make use of the minimum principle for 
the grand potential.23 We allow variations of r and C 
with the restriction, however, that C be unitary and 
m symmetric, and set 512=0. It is easy to see that 
5 ( 0 ) = | Tr[E5G], where, according to Eq. (10) 

5G=5CrCt+C5rCt+Cr5Ct. (19) 

Let us first vary r , keeping C fixed. We obtain 

512=| Tr[CtEC5r]+ (20)-1 T r [ l n ( r / I - r ) 5 r ] 

and therefore 
r = - 4 t a n h ( | / 3 8 d ) , (20) 

where the matrix 8 is defined in (170 a n d the subscript 
d means "diagonal part." 

Varying C with r fixed, we have 

512=| Tr[E(5CrCt+Cr5Ct)]. 

22 I t is useful to introduce a special associative product (dot) 
operation by 

Afif>BfY=A-B = Tr(AB), 

Afif*BfYf*fA,s= {A'B')f*fK 
23 See, e.g., H. Koppe, VariaHons-methoden in der Quanten-

statistik, W. Heisenberg und die Physik unserer Zeit (Vieweg, 
Braunschweig, 1961), p. 182. 
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Because C is unitary, we find 

fiO=iTr[(rCtEC-CtECr)CtfiC]. 

Taking properly into account the symmetry of all 
matrices involved, we conclude 

[ r , £ ] = 0 or also [G,E]=0. (21) 

It is important at this point to note a certain ambi
guity in the matrix C which was essentially already 
observed for the zero temperature case by Valatin.5 

If one considers a different set of quasiparticles </ 
= D-1a with a unitary w-symmetric D which commutes 
with r , then it follows that W' = W, or that the sta
tistical operator is unchanged. All physical quantities 
remain unchanged under this transformation. In 
particular, we have 

G=CrCt=(CD)r(CD)t . 

On the other hand, it is well known that an arbitrary 
Hermitian matrix M can always be diagonalized by a 
unitary transformation U. If, furthermore, M is m 
antisymmetric, U can be chosen m symmetric; from 
which it follows that Mdiag is also m antisymmetric. 
The proof is very simple. If g is an eigenvector of M 
with (real) eigenvalue X then gw is an eigenvector of 
M with eigenvalue —A. If now U is defined as 
(gimg2m* • -gi&r • •) then the m symmetry of U is 
obvious. 

From the Hermitian nature of G and E and Eq. (21) 
one concludes that both G and E can be diagonalized by 
the same unitary transformation. Since C already diago-
nalizes G into r but is only determined up to a D trans
formation and furthermore E can always be diagonalized 
by an m symmetric unitary transformation, it it possible 
to find an w-symmetric unitary C matrix which diago-
nalizes G and E simultaneously into r and 8. Then Eq. 
(21) is automatically satisfied. Since £ is diagonal, we 
can rewrite Eq. (20) by dropping the subscript <*. 

Our problem can now be rephrased as follows. Find 
C and r satisfying Eqs. (70, (10), (17"), (160, and 
(20). We shall refer to this problem summarily as the 
"C problem." 

5. THE CASE OF ZERO EXTERNAL FIELD 

Let us first consider the familiar case of a vanishing 
magnetic vector potential. This case can be treated 
simply in the momentum representation if one intro
duces a "barring" operation for coordinates by 

/ = ( M ) = ( - k , - f f ) . (22) 

With the spin-space matrices 

/ l 0\ / 0 1\ 
S ^ = 8„. = ( Y S^™ = a5;,,= ( J, (22') 

U = Ud 

G=Gd 

v=vd 
E=Ed 

&= Sd, 

,.7(1)5(1), 

V=Vd 

F=Fd 

4>=<$>d 
D=Dd 

A=A d 

and the momentum-space matrices 

/ k k ' « = 8(k-k ' ) , i W » = 5(k-k ' ) , (22") 

the solution of the C problem is of the form 

.7(2)^(2) ̂  (23) 

where the subscript d again indicates diagonal matrices 
and is dropped below for simplicity. All the diagonal 
matrices can be taken as even under the "barring" 
operation and real. 

Since r and £ must be real and diagonal, it follows 
that <f> and A are equal to zero. Equation (70 implies 
that u2-\-v2—l which can be parametrized by u=cos%y 
and fl=sinjy while Eq. (20) demands that T= 
- i tanh(|££). The relations (10) and (17") then lead 

(><)• („><)• « 
with the rotation matrix 

/u2—v2 2uv \ / cosy siny\ 

\—2uv u2—v2/ \—siny cosy/ 

One derives immediately from Eq. (24) that 

/TS\ /TE\ /8G\ / 1 6 \ /VE\ /6G\ 

*(o)-(rJ-(J-
as well as S2=E2+D2 and T2=G2+F2. Eliminating the 
spin dependence from Eq. (160 and substituting the 
last results lead to the final two coupled integral 
equations for E and D 

E k = k 2 - M + E k ' ( P k - ^ - 2 P 0 ) [ ^ k - 1 r k , E k , + | ] , 
^ k = ~ E k ' pk_k'<sk'_1rk'Z)k/, 

(25) 

together with Eq. (20) and 8k
2 = Ek

2+Dk\ 
The quantity & is the quasiparticle excitation energy. 

The system of equations (25) has the general structure 
well known from the work of BCS and reduces to the 
single BCS gap equation if one neglects the Hartree-
Fock contributions (containing Pk_k> — 2P0) in the 
equation for Ek and uses a factorizable (nongauge-
invariant) interaction in the gap equation. They have 
a trivial solution Z>=0 and may admit a nontrivial 
solution if the potential is sufficiently attractive. In 
their present general form, they could be studied 
asymptotically by a slight generalization of a method 
employed by Zubarev24 for the gap equation. We shall 

24D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [translation: 
Soviet Phys.—Usp. 3, 320 (I960)]. 
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not carry out this study here. For our later work it is 
sufficient to assume that a nontrivial solution of (25) 
has been found somehow. The expressions 

u2= {cos[J axctsji(E-1D)'Ji}2=i(l+S--1E), 

v2= {sin[£ arctan(£-iD)]}2=i(l- <§_1£) 

then give the solution of the C problem. 
The current calculated from this solution vanishes 

trivially as is expected. One can also easily derive for 
the grand potential, according to Eq. (18) 

0=Ek{( iTk--E k ) ( l+«k-T k £ k )+£k-5k 
- «k-TkZV-20-* ln[l+exp(-/95k)]}. (180 

6. RESPONSE OF THE SYSTEM TO A 
SMALL PERTURBATION 

Let the "kinetic energy" part of the Hamiltonian be 
K=K»>+K»> where K^ is small of first order and 
assume that the solution for K(0) is known. One is lead 
to consider the perturbation ansatz C=C (0)(I+B) 
where B is taken to be of first order of smallness. 
The matrix I+B must be unitary and therefore B 
must be anti-Hermitian. Denoting first order differences 
of the kind M(K)-M(K<°>) by M<» one finds that r<*> 
and £(1) are diagonal and related by the equation 
following from (20) 

(26) 

and becomes 

£'= CtK<«C+Ct[P. (Cr'Ct)]C. (270 

r<1>=-}/3[cosh(ij8€)2-a£<«. 

Furthermore, it follows from Eqs. (10) and (17") that 
(writing C again for C(0)) 

G«=0 1 >rCt+Cr»>Ct+CrCW = G(1>t, 

E<r> = C® £Ct+ C s ^ Ct+ CfiCW = E<» t, 

or, since 0»= C B, that G<«= Cr'Ct and E<»= Cfi'Ct, 
with 

r'= r't= - r'm= r^+[B,r], 
£' = £'t= - £'™= £ ^ + [ B , £ ] . 

Finally, Eq. (160 implies the relation 

E<1>=K»>+P.GW. (27) 

It is interesting to observe that the matrix B can be 
completely eliminated from the above equations. 
Observe that r , r(1), 8, and £(1) are all diagonal and 
therefore commute. Then it follows with the Jacobi 
identity that 

[r',g]=[[B)r])£]=C[B;£],r]=[£'Ir]. (26') 

Since the diagonal £ and r are given, this relation 
determines the nondiagonal matrix elements of £' in 
terms of those of r ' . On the other hand £ / = £(1) and 
i y = r<1} so that from Eq. (26) 

£ / = - 4 ^ [ c o s h ( ^ £ ) ] 2 r / . 

Equation (27) can be written in terms of £' and r ' 

Finally, the linearized problem, with B eliminated from 
it, can be stated as follows: Find r ' and £' satisfying 
Eqs. (26), (260, and (27;). The matrices C, r , £, P, 
and K(1) are to be considered known. 

The Meissner effect is then established by examining 
the relation between the current and the vector po
tential. From Eq. (5) one has to first order in A 

<Jq>=^-1 Lk,(2k+q)G k , k + q^ 1)-2^F- 1A(q), (28) 

where Ga) is given in terms of Tf. One can now remove 
all the spin dependence by factorization of the spin 
matrices appearing in the formulas. The matrix C is 
known as 

C=( . ) , (29) 

while 
-#(1)* 0 

(290 
0 K«h 

/-K^* 0 \ 

V 0 KM/ 

is with the matrix elements from Eq. (2) 

*„»<»=-5„, (k+k ' ) -A(k ' -10. 

It is convenient to denote matrices like u, v which 
have their spin dependence factored away by the same 
symbols as before, if there is no risk of confusion. We 
also set 

_£(i)p/* si2)&\ r ' t = r " 

and 

/ - ^ l " * 5 W $ ' \ 

\_S(2)$/* SMT'/' 

y-SMg'* 5<2>A'\ 
J " \ _ 5 ( 2 ) A / * 5(1)g// 5(2)A/* 5(1) g ' / ' A'=A'. 

Making use of these expressions in Eq. (27) one 
obtains easily 

On the other hand, substituting into Eq. (270, o ne 
also obtains, after some calculations, equations not 
containing any more spin variables. 

g'+[vQ-GM*v+vP-FMu+uP-FM*v-uQ-GMu'l 
= uKMu-vKM*Vy 

A'*+[uQ-GMv+uP-FM*u-vP-FMv+vQ'GM*u2 
= -uKMv-vKM*u. 

There are, of course, two more equations obtained 
from these by complex conjugation. 

The spin separated equations we have obtained 
contain the unknown quantities together with their 
complex conjugates. It is possible to extricate the 
quantities themselves by taking suitable linear combi-



M E I S S N E R E F F E C T A N D F L U X Q U A N T I Z A T I O N A355 

nations of the equations. For any quantity Mkk' define 

J f k k r = K ^ k k ' + r M _ k _ k ' * ) , r = ± l , (30) 

so that Afkk' = ]CT^"kk'T. Due to the linearity of the 
equations and the fact that they have real coefficients, 
we can take the appropriate r combination. Using the 
abbreviations 

gkk'T=UkUk> — TVkVk> , 

/ k k ' r = W k ' + r ^ k ' , (31) 

Qkk'mm' = 5 ( k / - k + m / - m ) ( 2 k m q , 

Pk-k'm-m^ = 5 ( k / - k + m , - m ) P k m % 

one obtains immediately that25 

Gkk'a) = g k k ' ^ k k / - / k k ^ k - k ' ^ (310 

^ k - k ' ( 1 ) = / k k ' r k k / + ^ k k ^ k _ k / , 

<§kk'/+C~~gkk'(?kk' k'm—m'/mm'JJ- mm' 

+ Lgkk'(?kk'm'm/mm' + / k k ' ^ > k-k 'm-m'^mm' —-m' 

= gwKw<*>, 01") 

Ak_k' '+[/kk'Q + g k k ' i \ - k'm—m'/mm'JA mm' 

+ L ~ / k k ' G k k ' m ' m / m m ' + ^kk '^ > k ) -k 'm-m'^mm'J^ > m-m' 

= ~ / k k ' ^ k k ' ( 1 ) . 

From Eq. (31), it follows that k ' — k ^ m ' — m = q 
enters into Eq. (31") only parametrically, and that the 
summation over m' can be performed due to the delta 
functions in Eq. (31). The resulting equations can be 
written concisely for each fixed value of q in vector-
matrix notation by introducing the vectors T '= (IV (q)) 
= ( r k k + q

/ ) and $ ' = ( $ k
/ ( q ) ) = ( $ k _ k _ q

/ ) ; (similarly for 
&', A'), the diagonal matrices g— (/ki

(1)gkk+q) (similarly 
for / ) and the matrices i \ i = P k i q (similarly for Q). 

I t has been pointed out above that £' is determined 
by r ' from Eqs. (26'). These equations, after eliminat
ing the spin matrices give rise to 

^k
,(q)(rk-rk + q)=((§k-^k + q)rk

,(q), 

Ak
r(q)(rk+rk+q)= (£k+<W$k'(q), 

together with the diagonal relation £k '(o) = — 4/3-1 

X cosh2 (J/3 Sk) - lY(o) . We also observe that the relation 
for q = o is the limit of the relation for q ^ o as q—> o. 
Setting 

r k
± ( q ) = r k ± r k + q , <Sk±(q)=£k±<Sk+q , (32) 

p ± = ( r ± ) - i g ± , 

we can write this in vector form 

S'=p-T' and A'=p+$' (320 

which can be taken as valid for all values of q. 
Making use of Eq. (320, we can eliminate &' and A' 

from Eq. (31"). The resulting equations, written in 

compact vector notation appear as 

where L is the symmetric operator 

L/p-+fPf-gQg JPg+gQf \ 

\ gPf+fQs P++gPg-fQj)' 
Following up the steps taken one finds for Gm 

G < » = 5 ( » E r ( g r ' - / * ' ) 

and from Eq. (28) with A-1 = 2eWF- 1 

( J , ) = ( g A ) - 1 [ ^ - 1 E k r ( 2 k + q ) 

X ( g k r k ' - / k * k ' ) - A ( q ) ] . (33") 

One should observe at this point that with our 
choice of the perturbation (magnetic vector potential) 
Ka)T vanishes for r = + l. Therefore, Eq. (33) has a 
vanishing inhomogeneous term for r = l and, since the 
linear operator is nonsingular for r = l , it is in fact 
possible to conclude that the unknown quantities V 
and <£>' vanish for r = l . Only the combination for 
r = —1 survives and has to be found. Therefore we 
shall assume in the following that r = — 1. If we had 
chosen a different perturbation, the situation might 
have been different. For instance, if i£(1) corresponds 
to a weak external electric potential, then it is easy to 
see that K(1) T vanishes for r— — 1 and one has to study 
in detail the equations for the value r = + l. In the 
case of a general perturbation, both contributions 
would be present. 

7. DERIVATION OF THE LONDON FORMULA 

We first consider the behavior of our linearized 
equations (33) under gauge transformations. An infini
tesimal gauge transformation can be written in mo
mentum space as A(k) —> A(k)+k-?7k and ak—> ak 

+]Lk' ^k-k'^k'- The corresponding first-order change 
in K is 

# / / ^ = - ^ k ' 2 - k 2 ) ^ _ k (34) 

and the first-order changes in F and G are F(x) = fqF—Fri¥ 

and G{1) = \jf ,G~]. We are therefore led to expect that, 
if one introduces an infinitesimal purely longitudinal 
perturbation, Eq. (34), the solution of our linearized 
problem will be given by these expressions, or on 
comparing terms by 

\ 0 ri*/ 

The superscript r is dropped and k, k' are not summed over. 
I t is verified in Appendix I I I that this expected solution 
is indeed a solution of the linearized problem for a 
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purely longitudinal perturbation and does not give rise 
to any current. For I" and <£' one obtains 

T'=T~g+v, 4^/=—r+y^if. (36) 

By factoring 17 from the corresponding Eqs. (33) and 
(36), one therefore finds 

LT=L( W W . (37) 

It is now easy to see that the operator L has a zero 
eigenvalue, if q=o and the gap equation has a non-
trivial solution. Indeed for q=o the vector £ is the 
nullvector and (37) then implies L(q=o)y(q=o) = 0. 
Here the various quantities appearing tend to the 
following limits for q=o: 

/ - = / = 0 , f+=2uv=8~1D, P~=(dS/dT)t 

Written out, Eq. (37) therefore requires (r_1S 
+P)8~1FD=0 to be fulfilled. However, this equation 
will have a nontrivial solution 8~1YD=F exactly if the 
gap equation D + P F = 0 has a nontrivial solution. 
Thus the operator, which is in general nonsingular, 
tends to a singular operator in the limit of q= 0. It is 
to be noted however that for spherically symmetric P 
and Q, the eigenfunction corresponding to the eigen
value zero will be spherically symmetric also. In 
particular it will be even under the parity operation 
k<-» — k. This remark will be important later on. 

A general vector potential A(q) can always be 
decomposed into transverse and longitudinal parts and, 
similarly, the perturbation K can be split according to 

irk(q) = i r k ^+ir k
z =-2k.A^(q)- (2k+q) .A i (q) . (39) 

We introduce a parity operation in k-space II, which 
reverses the k vector components in the direction of 
A*. Clearly quantities like k2, (k+q)2 and Pk-k' (by 
assumption) are even under II while k« A* is odd. Since 
L is constructed from quantities depending on k2, 
(k+q)2, and Pk_k>, it follows that [L,n]=0. On the 
other hand, the longitudinal part of the perturbation 
in Eq. (39) is even under II while the transverse part 
is odd under II. Hence it follows that if q^o (L non-
singular), the solution of Eq. (33) will be the sum of 
two parts, one even under II, the other odd. As q —> 0 
one then expects L to be nonsingular in the subspace 
of odd II parity while it becomes singular, with the 
eigensolution (37) in the orthogonal subspace of even 
II parity. This illustrates the characteristic features of 
the Meissner effect, i.e., the completely different nature 
of the response of the system to longitudinal and to 
transverse vector potential perturbations. 

We proceed now to discuss the Buckingham sum 
rule and the current conservation law. It is expedient 

to introduce 

/ r « \ /-g(2ka+qj\ 
IV=( ) , K«=( ) , (40) 

such that Lr«= Ka. Now according to Eqs. (33") and 
(40), the expectation value of the current can be 
written as 

<J«(q)>= W~lLSM-**filAfi(q), (41) 

where with Eq. (40) and the symmetry of L, 

^ ( q ) ^ - 1 E k ( 2 ^ + g « ) ( r ^ - r ^ ) , 

= S,«(q). (410 

Thus the paramagnetic response tensor Safi of Eq. 
(410 is seen to be symmetric. Furthermore it is seen 
with the aid of Eq. (37) that 

=N-Hrfi\i\v)=N-Kr\l<\re) 

= N~* Ek(2^+g^)((?k-Gk+q) = ̂ . (42) 

Thus we obtain the Buckingham sum rule 

[5a/j(q)-8«^]»=0, (420 

which insures that only the transverse vector potential 
gives rise to any current. From Eqs. (41) and (410 it 
then follows immediately that the current is conserved. 

qa(Ja(q))=0. 

Since the effect of a longitudinal vector potential has 
been studied explicitly and shown not to give rise to 
any current, we can assume from now on that the 
perturbation appearing on the right-hand side of Eq. 
(33) is purely transverse. In general it will not be 
possible to invert the operator L and solve the equation. 
However, it is of interest to consider the limiting case 
q -*o (London limit) and to study the temperature 
dependence of the current in this limit. Using Eq, 
(38), Eqs. (33) become 

( GV^JK71, f -+pV=0. (43) 

Since # ' must also have odd II parity, it must vanish. 
Hence the current response is given from Eq. (33'0 
for spherically symmetric Q as 

<J(q^o)> 

= ( eA)-1[ iv-1Ek2krk ' -A] 

= (eA)-1 N-1 £ 2k( 1 Q ) — ( - 2 k ' . A) -A 
L w \ dS ) dS J 

= -2eF-W eA, (44) 
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with 
ar y1 dr 
7?} •w 

dS 

+2Ek((Sk-1rkEk+J), (45) 

where h is the component of the momentum along any 
axis. Ns can be interpreted as the number of super
conducting electrons at the given temperature and has 
the expected temperature dependence. Indeed, as 
T-^0 the first term in Eq. (45) vanishes, because 
dT/d& —»0, and we have limT^oNs=N7 the total 
number of electrons. On the other hand, as T —» Te, 
the critical temperature, or at any rate if D=0, we 
have successively 

6=\E\, c r k = £ k / | £ k | , 

(450 

susceptibility including corrections due to the inter
action between the electrons. This will be included in 
a forthcoming publication. 

If one is willing to sacrifice the gauge invariance of 
the interaction at this late stage in order to be able to 
solve the general linear equations in a special case, one 
can consider the factorizable kernel Pk-k' —»/k 'Jk'* 
This model includes the kernels of BCS and Gor'kov 
as special cases and Jk will be assumed to be a spheri
cally symmetric function with a support of the approxi
mate width 2coDebye centered around the Fermi surface. 
All that is needed for the validity of the results given 
below is that Jk be such that Jk and the basic quantities 
Tk, rk+q, uk, uk+q, vk, vk+q be even under the operation 
II. The special form of Jk is not essential in the following 
and actually does not enter significantly into the final 
formula for the Pippard kernel. From Eq. (33') we 
see that the operator L can now be written with the 
aid of dyadic notation 

- / « > /P~ ° \ / & -JS\ 

Now, it is easy to show that (45') vanishes identically. 
Consider the derivative 

—[^(rko-k+|)]=rk<rk+i+^3—(rkcrk). 
dh dh 

Now 
d dT dEk 

(rkcrk) = ; 
dh d\E\ dh 

on the other hand, from Eq. (25), we have 

dEk d 
= 2&3+E k' Qk-k' (rk 'ov). 

dh dh' 

fg f 

+ ( ^ J ) ( ~ g / l / / ) + ( / J ) ( / / i g / ) - (47) 

Since Jk is of even parity it follows that the part of L 
written in dyadic form gives zero when applied to the 
solution of Eq. (33), which must be of odd parity. 
Equation (33) can now be immediately solved with 
the result 

(48) 

It follows that 

O-jiii*) 
dr \d(rv) <zr 

dk3 d\E\ 
•2h 

V = { l+2 / 4
2 [ (p - ) - ^+ (P+)-1/2]}-1 (p-y'gK' *, 

* ' = - {i+2JV[ (p - ) -v+ (P+)-1/2]}-1
 ( P + ) - 1 / ^ ' ' • 

Furthermore, if we are interested in values of q small 
compared to the Fermi momentum, we can make the 
approximation / q = 0 in Eq. (48), since the function 
Jq is assumed to be different from zero only in a shell 
around the Fermi surface. 

For the paramagnetic part of the current one finds 
then 

and Eq. (45') becomes 

<V>= (^A)-W-1 £k(2k+q)(2k. A'(q))Zk(q) 
= (eA)-*ZW-i Ek &32£k(q)]A<(q) 

(49) 

# . = 2 E k — [>3(rk<rk+i)]==o. (46) 
dh 

The expression, Eq. (45), for the number of super-
electrons is a generalization of that given by BCS1 and 
reduces to it if one neglects the contributions containing 
Q-

If we set D=0 but allow q to differ from zero, the 
total current does not vanish. For small q one obtains 
a contribution proportional to q2 which must be 
interpreted as a Landau-type diamagnetism. One can 
use the formulas given above to study the magnetic 

with Zk(q)= — (p"1")"1/2-(P~)-1^2 where the evenness 
(oddness) of £k(q) (k«A*) under II has been used in 
the last step. Therefore the total current is given by 

(50) 
with 

<JqH-2eF-Ws(q,r)A<(q) 

7Vs(q,r) = Ar-4EkA3
2Lk(q). 

This relation is identical to the one derived by BCS1 

and hence all the further manipulations quoted there 
apply here, if one makes their assumptions about Jk 

so that the basic equilibrium solution used here coin
cides with theirs. The expression derived here is thus 
slightly more general. 
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FIG. 1. Typical geometry. 

We consider now a doubly connected superconductor. 
In the stationary situation the bulk of the supercon
ducting material will exhibit the Meissner effect and 
we can at first neglect surface effects. In order to 
obtain simpler equations, it is expedient to distort the 
typical doughnut geometry which occurs in the phe
nomenon of flux quantization by cutting it open and 
stretching it into a "straight'' shape. (See Fig. 1.) It 
is apparent that the "natural" boundary conditions 
at the surfaces Su' and S/ are periodic ones. Further
more, since surface effects are ignored here, it will be 
allowed in a reasonable limit to move the surfaces FQ 
and Fi, respectively, to the right and left and straighten 
them out into planes. It is then convenient to move 
them in such a fashion as to construct an L-periodic 
box within which the usual box quantization description 
with periodic-boundary conditions is adopted. It is 
emphasized however that these periodicity requirements 
are not on the same footing as far as their physical 
significance is concerned. The x, y periodicity is sheer 
mathematical convenience bringing about the discrete
ness of the quantum numbers kX) ky while the z perio
dicity imitates a doubly-connected 3-dimensional 
volume. We wish to study the nonlinear C problem in 
the geometry just described. 

The flux passing through the interior (to the left of 
Fi) is measured by the line integral of the vector 
potential along the arrowed path in Fig. 1: 

<p= f fd¥'B = e-1 f A-rfs. 

The path can be deformed arbitrarily as long as it 
stays within the superconducting material and clear of 
the boundary (where flux and fluxoid differ because of 
the surface currents) without changing <p. In the 
modified geometry, a change of gauge does not affect <p 
and therefore it is convenient to choose the gauge so 
that A is a constant vector in the z direction. Then 
integrating along a straight line from S{ to SJ, <p 
= e~YLA and 

ir / / , = 5^5 (k -kO[ (k -A) 2 - M ] . (51) 

We decompose a general A according to26 

A=A'+A", (52) 

Af = L-17rlT~1LA+^, A"=A-A'. (53) 

Since Ar=nL~lir (n integer), it is seen that for any 
"allowed" lattice vector k, the vector —k+2A' is also 
an "allowed" lattice vector. This suggests a modified 
"barring" operation corresponding to a modified 
pairing, 

/ = ( M ) = ( - k + 2 A ' , - < r ) , (54) 

A^=Aff>=Aff> 

7<2>^ = 5(k+k'-2A') . 

It is apparent that of the matrices S(1\ 5(2), Ia\ and 
I(2'A\ only S{2) has odd "barring" parity, all others 
being even. The C problem is then solved in perfect 
analogy with the solution given in Sec. 5 except that 
7(2) is replaced by I{2>A) and the modified "barring" 
symmetries are used. Let us examine the various 
equations of the C problem.27 

The relation (7') is satisfied if 

or equivalently u2+v2=l, —uv+vu=0. These rela
tions can be solved by setting ^=cos§y, z>=sin|y and 
u=u, v=v. The antisymmetry of D and F implies 
[J9,/<2^] = [F,/<2^>]=0 which is equivalent to 

D=D, F=F. (55) 

The relations (10) and (17") then demand after 
separating the spin dependence and observing Eq. (55) 
that 

T = u2G-v2G+2uvF (56) 

0=-uv(G+G)+(u2-v2)F 

S=u2E-v2E+2uvD (57) 

0=-uv(E+E)+(u2-v2)D. 

The remaining equations are identical with Eqs. (20) 
and (25), since the barring operation commutes with 
the difference kernels P and Q in Eq. (25), except that 
the kinetic energy is modified according to 

# k = ( k - A ' - A " ) 2 - M , i ? k = ( k - A ' + A " ) 2 - M . (58) 

Introducing the prime and double prime operations, 
which split a quantity 0 into parts of even and odd 
"barring" parity, by 

o'=uo+d), o"=i(o-o), 
26 Here the symbol [x] denotes the largest integer smaller 

than x. 
27 The subscript d denoting diagonal matrices is dropped for 

brevity. 

8. FLUX QUANTIZATION and leads to the modification of I™ into 
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one obtains the equations 

Q-Q- GO-
r " = G " , <§"=£", {51") 

r '=-i{tanh[| /3(<S'+S'0] 

+ t a n h [ i J 8 ( « , - 0 ] } , 

r , ' = - i { t a n h [ ^ ( < § ' + ^ ) ] 
-tanhB/3((S'-<§")]}, (59) 

and 

2jy=(k-A')2+A"»-/*, 2T k "=-2(k-A ' ) -A" . (60) 

One observes that except for the coupling, which occurs 
in Eq. (59) through & and 8" the prime and double 
prime systems of equations are disconnected. 

It is then immediately seen that &'Gf = TfE', 8fF 
= T'D and T'2=G'2+F2, g'2=E,2+D2 so that finally 

£ /=JT /+Q[5 /- 1r / iS /+J] , E"=K"+Q'T" 

D=-P[S'~1T,D']. (600 

Together with Eq. (59), the Eqs. (600 form a set of 3 
coupled integral equations for the quantities E\ E" 
and D, from which all the other quantities can be 
reconstructed. 

In the special case that A"=0, i.e., A=A'=nirL~1 

the flux is quantized in half the London units <pL 

<p=nwe~1=%n<piJ (n integer). (61) 

Since all the double primed quantities vanish, the 
primed and original quantities coincide and the equa
tions are identical to the equations of Sec. 5 except for 
the added A' in the kinetic-energy expression (58). 
Since P and Q are difference kernels, it is easy to see 
that the solution of these equations for A'5*0 is related 
to the solution of the equations for A'—O studied in 
Sec. 5 by the identity 

E k + A'(AV0)s£ k (A'=0) , (62) 

and similar identities for all the other quantities. In 
particular it follows then from Eq. (62) that all these 
solutions have zero current and exactly the same grand-
potential value as the solution for A' = 0 of Sec. 5, in 
contrast to the solutions for which the double primed 
variables differ from zero as shown below. 

The general system with A^Af can be attacked by 
several methods. For one thing one can expand the 
equations in powers of the deviation from the nearest 
equilibrium point Af, i.e., in powers of A". One can, 
however, also solve an approximate system of equations 
which obtains by dropping the QT" term in Eq. (60r). 

r ' '= - i{ tanh[M<S'+ iTO] (63) 
- t anh[^ (<S , - i r / / ) ]} . 

Then all the double primed quantities have disappeared 
from the equations for the primed quantities and only 
the latter have to be found from Eq. (600 with V from 
Eqs. (63) and (59). This set of equations is again 
identical to the set derived for A" = 0 except for the 
different V and the added A"2 appearing in K'. 

As far as the linear current response is concerned it 
suffices to linearize Eqs. (59), (60), and (600 with 
respect to the perturbation A" for fixed Af. In this 
way one studies the behavior of the system in the 
neighborhood of the quantized flux solutions. From 
Eqs. (57"), (59), and (60) it is seen that to first order 
in A" 

dTk dTk 
G k " = r k " ^ 8k"= (Kk"+Q^VG*") 

dSk dSk 

and hence 

/ dv v - ^ r 
S k"=E kYl Q) —[-2A".(k ' -A' ) ] . (64) 

\ dS / dS 

Substituting this into the expression (5) for the current 
and using the "barring" parity of the unperturbed 
solution for fixed A' one finds 

<Jq)= (eA)-i8(q)lN-i Ek(k(?k+kG)k-A] 

= (eti-WdZN-1 Ek(2k-4A')Gk"-A"] 

= - 2 e F - 1 | " i V + 4 E ( ^ - 2 ^ o ( l o) 

dT -i 
X—(kA-A') 8(q)A" 

dS J 
= -2eF-W s-5(q)A", (65) 

or (J)=— 2eV~lNsk". In the last step the isotropy of 
the current response for spherically symmetric Q and 
the identity (62) have been used in order to employ 
the definition (45) of Ns. This factor very clearly 
displays the expected temperature behavior of the 
supercurrent. Furthermore, since the basic solution for 
fixed A' is a solution of the full nonlinear equations, 
it is permissible to integrate Eq. (65) in order to find 
the dependence of the grand potential O on A", 

Q(A")=Q(0)+NA"*: (66) 

Since 12(0) is equal to the grand potential for the 
equilibrium state of the zero-field case it is apparent 
that the behavior of O in the vicinity of the stationary 
points corresponding to the quantized flux solutions is 
parabolic as predicted by Byers and Yang.11 Further
more, the factor N8 displays the anticipated tempera
ture dependence of the term peculiar to superconductors 
in Eq. (66) and, as shown above, causes this term to 



A360 D . A. U H L E N B R O C K A N D B . Z U M I N O 

vanish above the critical temperature or at any rate 
if the gap vanishes. 

If one requires that in addition to the electron field 
equations resulting from H also Maxwell's equation, 

eurlB=<J>, (67) 

be satisfied, it is seen from Eq. (65) that almost all 
solutions parametrized by the one-dimensional con
tinuous variable A are ruled out as consistent solutions 
since they have a bulk current. Only the solutions 
corresponding to ^4"=0, i.e., quantized flux values, are 
also electromagnetieally consistent in that they assume 
a vector potential corresponding to a full Meissner 
effect and have no bulk current. Thus in the infinite 
cubic box geometry the Meissner effect drastically 
reduces the possible stable thermodynamic states and 
only allows solutions to the C problem with quantized 
flux parameter. The fact that more than one solution is 
possible is due to the periodicity requirement which 
imitates the doubly connected geometry. For the singly 
connected case there is just the solution corresponding 
to n=Q, i.e., the equilibrium state. The actual experi
mental situation is somewhat different, since the 
geometry is neither infinite in extent nor straight, but 
typically finite and doubly connected as depicted in 
Fig. 1. If the superconducting specimen is sufficiently 
thick so that the full Meissner effect B = o can develop 
in the bulk of the material, and sufficiently large so 
that the actual curved nature of the surface can be 
ignored as far as the microscopic properties are con
cerned, the solutions described above will afford a 
reasonably good description of the bulk properties of 
the system. 

In the experiment described in the papers quoted in 
Ref. 9, the system is placed into an external homo
geneous field parallel to the cylinder axis and then 
cooled below the transition temperature. The bulk of 
the cylinder goes over into one of the preferred states 
with A"=0, since this is the most economical arrange
ment as far as the volume contribution to the grand 
potential is concerned. However, two surface currents 
are needed to bring this preferred state into existence. 
One of these persistent currents flows along the outer 
surface and is such as to cancel the applied field inside 
the superconductor and thus enables the Meissner 
effect to be set up. The other surface current flows 
along the inner surface and creates the quantized 
amount of flux through the hole in order that the bulk 
of the material have a vector potential corresponding 
to one of the preferred values consistent with Maxwell's 
equation. 

The theoretical discussion of the surface transition 
regions and the behavior of the field quantities there is 
rather complicated and essentially unsolved as far as a 
truly microscopic treatment is concerned. However 
within the framework of the Ginzburg-Landau theory 
several such discussions have been given.16 
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APPENDIX I 

Unitary of C 

With the dichotomic index v— (=fc) such that # /=#/_ , 
fl/t=a/+, « /=« /_ , a / t = « / + , 
and 

Uff> = C/_/>_ u/f>* = C/ + / ' + 

Vff* = C/.//+ »//'*= C/+/>_ 

Eq. (6') can be written as a/v= C / , / v « / v - This 
transformation is canonical if and only if 

implies 
{<Xfp9af'P>}=5fft8Vt-j,f 

and vice versa. The m symmetry of C leads to 

KAfpf'p'—K* f—pf'—p' 

and one finds 

Sff'Spv' — {dfpjdf-v'} 

~ ^fvgp^gpf'v' 

or I=C»Ct . If Eq. (6;) is required to have an inverse 
then C has a unique C""1 and 

C = ( C t ) - ' , (Al) 

i.e., C is unitary. 

APPENDIX II 

Two-Part ic le Correlation Funct ion 

I t is seen from Eqs. (9') and (10) that 

G=u*TU+v*(l-T)v, 

F t = i i * r » t + « * ( i - r ) « t . 

Together with Eqs. (6) and (9') this implies 

= < ( % V % l f + ^ / V * < v ) ( % v W H - ^ V * < v ) 

X («/1<W+»/ ,<r*Vt) (%4
ff

4<V+*>/4ff4<Vt)) 

Xluf*g>*Uf*g*Tg*+Vf*g**VfSg>(l-~Tg*)2 

— lUflg^f*glTgl+Vflgl*Vf*gl(l--Tgl)'] 

XlUf*g*Uf*g*Vg*+Vf*g**Vf*g*(l--Tff*)li 

+ Z^f1Ol*Vf^*Tgl + Vflgl*Uf^*(l-Tg1)2 

X \jUf*g*Vf*g*Tg*+Vfgntf<g*(l ~ P,»)] 
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This corresponds to the results of a generalized Wick's 
theorem. 

APPENDIX III 

Proof of Equation (37) 

The expected solution 

B=Ctf \c (35) 

\o W 
leads to 

r'=[B,rW ). 
\-#'* rv 

After both the factorization of the spin matrices and 
the r separation, one finds T^T-g^ri and # '= — T+f+rj. 
Writing out Eq. (33) with the use of Eqs. (33f), (34), 
and (35), one obtains after factoring rj 

S-g+-gQ(v+ff++v-gg+) 

-fP{T+gf+-T-ft) = g(W-V*), 

«§7++gP(r+g/+-r-/g+) 
-fQ(r+ff++r-gg+)=f(k>-k'*), 
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which reduces to28 

S~g+-g(E--E>)+f(D+D>) = 0, 

S+f+-g(D+D')-f(E-m = 0, 

if one uses 

T+ff++T~gg+=T(u2-^)-Tf(u/2-v,2)=G-G,, 

T+Sf+- T-fg+=T2uv+T'2uv'=F+Fr, 

¥-kf2=E-E'~~-Q(G~-Gf), 
and 

G=D+D'+P(F+F'). 

Multiplying Eq. (360 by / + and g+, and adding and 
subtracting the resulting equations, one has 

0= - 8 $m(y+y')+smy'(E-E') 
+cosyf (D+Df), 

0= - S+S' cos(y+yf)+cosy (E-E') 
+smy(D+&), (36") 

and two equations with primed and unprimed quantities 
interchanged. Since, according to Eq. (24), E=S-cosy 
and D=S-smy it is seen immediately that Eq. (36") 
is satisfied. 

28 In this section the prime denotes a change of argument from k 
to k'. 


